
CS103ACE Lecture 3-5 Practice Problems

1. Propositional Logic Review

Expression English Translation Negation of Expression

A ∧ B A and B 2 possibilities: ¬A ∨ ¬B, A → ¬B

A ∨ B A or B ¬A ∧ ¬B

¬A Not A A

A → B A implies B A ∧ ¬B

A ↔ B A if and only if B 2 possibilities: A ↔ ¬B, ¬A ↔ B

⊤ True ⊥

⊥ False ⊤

Spring 2024 – Page 1/13



CS103ACE Lecture 3-5 Practice Problems

2. Negating Propositional Statements

We’ll demonstrate “starting from the outside” when taking negations in class. Take the negation
of the following statements:

a. A → ¬B

The outermost connective here is →. The negation of the implication is A ∧ ¬(¬B),
which simplifies to A∧B. This shows why this expression is one of the negations in the
first row of the table above.

b. (C → D) ∧ (D → C)

The outermost connective here is ∧. That means the negation is ¬(C → D)∨¬(D → C).
Then, we can negate each of the implications to find that the negation is (C ∧ ¬D) ∨
(D ∧ ¬C).

We can also observe that this original statement is equivalent to C ↔ D, so we can also
substitute either of the negations from the table above.

c. ¬Q → ¬P

The outermost connective here is →. The negation of the implication is ¬Q ∧ ¬(¬P).
Simplifying the second term, we see that this becomes ¬Q ∧ P.

We can also observe that this original statement is equivalent to C ↔ D, so we can also
substitute either of the negations from the table above.

d. (¬X ∧ Y) ∨ Z

The outermost connective here is ∨, so the negation is:

¬(¬X ∧ Y) ∧ ¬Z

To simplify the first part of the expression, we take the negation of an “and” statement:

((¬(¬X)) ∨ ¬Y) ∧ ¬Z

(X ∨ ¬Y) ∧ ¬Z

Bonus: Notice that this result takes the form of “A and not B”: the negation of an
implication! That means the original expression is equivalent to the implication ”A
implies B”, or (X ∨ ¬Y) → Z.

Spring 2024 – Page 2/13



CS103ACE Lecture 3-5 Practice Problems

3. First-Order Logic I Review

Expression English Translation

∀x.(P (x)) Everything is a P.

∃x.(P (x)) Something is a P.

∀x.(A(x) → B(x)) All A’s are B’s.

∃x.(A(x) ∧B(x)) Some A is a B.

Spring 2024 – Page 3/13



CS103ACE Lecture 3-5 Practice Problems

4. Evaluating First-Order Logic Statements

Let’s say the predicate Gray(x) is true if x is gray, White(x) is true if x is white, Star(x) is true if
x is a star, and Circle(x) is true if x is a circle. Consider the following three worlds:

For each of the following first-order logic statements, say whether it’s true in each of the worlds.

Expression World 1 World 2 World 3

∃x.
(
Circle(x)

)
⊤ ⊤ ⊥

∀x.
(
Circle(x)

)
⊥ ⊥ ⊤

In worlds 1 and 2, the stars are counterexamples.

∀x.
(
White(x) → Star(x)

)
⊥ ⊤ ⊤

The white circle in world 1 is a counterexample.

∀x.
(
Star(x) → White(x)

)
⊥ ⊤ ⊤

The gray star in world 1 is a counterexample.

∃x.
(
Gray(x) ∧ Star(x)

)
⊤ ⊥ ⊥

There is only a gray star in world 1.

∃x.
(
Gray(x) ∨ Star(x)

)
⊤ ⊤ ⊥

Either choice of shape works in world 2.

∀x.
(
White(x) ↔ Circle(x)

)
⊥ ⊥ ⊤

The gray circles and white stars are counterexamples.

Spring 2024 – Page 4/13



CS103ACE Lecture 3-5 Practice Problems

5. Translating English to First-Order Logic

Translate each statement into first-order logic, given these predicates: HasHat(x) says that x is
wearing a hat and Dog(x) says that x is a dog.

a. There is a dog.

This takes the form of one of the basic forms:

∃d.
(
Dog(d))

b. All dogs wear hats.

We can rephrase this to “all dogs are hat-wearers”, which is one of our basic first-order
logic forms:

∀d.
(
d is a dog → d is wearing a hat

)
∀d.

(
Dog(d) → HasHat(d)

)
c. There is a dog with a hat.

We can rephrase this to “some dogs are hat-wearers”, which is one of our basic first-order
logic forms:

∃d.
(
d is a dog ∧ d is wearing a hat

)
∃d.

(
Dog(d) ∧HasHat(d)

)
d. Some dogs don’t wear hats.

We can rephrase this to “some dogs are not hat-wearers”, which is one of our basic
first-order logic forms:

∃d.
(
d is a dog ∧ d is not wearing a hat

)
∃d.

(
Dog(d) ∧ ¬HasHat(d)

)
e. Some dogs wear hats, but not all dogs wear hats.

The main, outermost connective in this statement is the “but”, which can be translated
into first-order logic as “and”. We already know how to say “some dogs wear hats”
from part (c), and we know how to say “some dogs don’t wear hats” from part (d). If
we combine them with ∧, we get our answer:

Spring 2024 – Page 5/13



CS103ACE Lecture 3-5 Practice Problems

∃d1.
(
Dog(d1) ∧HasHat(d1)

)
∧ ∃d2.

(
Dog(d2) ∧ ¬HasHat(d2)

)
(Note: We don’t need to use separate variable names here, since d1 and d2 are in different
scopes. But I think it helps for readability.)

Spring 2024 – Page 6/13



CS103ACE Lecture 3-5 Practice Problems

6. First-Order Logic II Review

The table from First-Order Logic I Review is reproduced for your quick reference.

Expression English Translation Negation of Expression

∀x.(P (x)) Everything is a P. ∃x.(¬P (x))

∃x.(P (x)) Something is a P. ∀x.(¬P (x))

∀x.(¬P (x)) Nothing is a P. ∃x.(P (x))

∃x.(¬P (x)) Something isn’t a P. ∀x.(P (x))

∀x.(A(x) → B(x)) All A’s are B’s. ∃x.(A(x) ∧ ¬B(x))

∃x.(A(x) ∧B(x)) Some A is a B. ∀x.(A(x) → ¬B(x))

∀x.(A(x) → ¬B(x)) No A is a B. ∃x.(A(x) ∧B(x))

∃x.(A(x) ∧ ¬B(x)) Some A isn’t a B. ∀x.(A(x) → B(x))

Spring 2024 – Page 7/13



CS103ACE Lecture 3-5 Practice Problems

7. Evaluating Nested First-Order Logic Statements

For each statement, translate it into English, then decide whether it’s true or false.

Interpersonal Dynamics: This diagram represents a set P of people named A, B, C and D. If
there’s an arrow from a person x to a person y, then person x loves person y. We’ll denote this by
writing Loves(x, y).

A

C

B

D

a. ∃x ∈ P. Loves(x, x)

This means “there is some person x who loves themself.”

This is not true! No one in this diagram has an arrow toward themself.

b. ∀y ∈ P. ∃x ∈ P. Loves(x, y)

This means “for every person y, we can pick someone who loves y.”

This is true: A is loved by D, B is loved by A, C is loved by everyone, and D is loved
by A.

c. ∃x ∈ P. ∀y ∈ P. Loves(x, y)

This means “there is some person x who loves every person in P .”

This is not true: since no one in this diagram loves themself, no matter who you pick
for x, you can pick that same person for y and the statement will not be true.

The key difference between this part and the previous part is that in this part, you need
to find one single person x, but in the previous part, x could change depending on what
you picked for y.

d. ∃x ∈ P. ∀y ∈ P. (x ̸= y → Loves(x, y))

This means “there is some person x who loves every other person y in P .”

This is true! We can pick A as person x, and A loves all the other people in the diagram
(B, C, and D).

Spring 2024 – Page 8/13



CS103ACE Lecture 3-5 Practice Problems

e. ∀x ∈ P. ∀y ∈ P. (x ̸= y → (Loves(x, y) ∨ Loves(y, x)))

This means “for every person x and every other person y, either x loves y or y loves x
(or both).”

This is true! No matter which two people we pick, there is a relationship between them.

f. ∀x ∈ P. ∀y ∈ P. (x ̸= y → (Loves(x, y) ↔ ¬Loves(y, x)))

This means “for every person x and every other person y, x loves y if and only if y
doesn’t love x.”

This is not true: pick x to be A and y to be D. The antecedent of the statement is
true, since A ̸= D. Then, consider the biconditional in the consequent. The left side
of the biconditional is true since A loves D. The right side of the biconditional is false
since D loves A, making the entire biconditional statement false. This makes the entire
statement “true implies false”, which is false.

Spring 2024 – Page 9/13



CS103ACE Lecture 3-5 Practice Problems

8. Translating English into First-Order Logic II

Translate each statement into first-order logic, given these predicates: Dog(x) says that x is a dog,
Robot(x) says that x is a robot, and Loves(x, y) says that x loves y.

a. Some robot loves exactly one dog. (You can express “there is exactly one thing with a certain
property” by saying “there is something with that property, and if something else has that
property, then they’re the same thing.”)

Since this is stating something that is true of only one/some robots, we can start by
applying the “some P’s are Q’s” form:

∃r.(Robot(r) ∧ r loves exactly one dog)

Following the hint – in this case, the property we care about is being the dog that is
loved by the robot, which we can express as follows:

∃r.(Robot(r) ∧ there is a dog that r loves ∧ there is no other dog that r loves)

Taking one expression at a time, we have:

∃r.(Robot(r) ∧ ∃d.(Dog(d) ∧ Loves(r, d) ∧ there is no other dog that r loves))

And our final answer is:

∃r.
(
Robot(r) ∧ ∃d.

(
Dog(d) ∧ Loves(r, d) ∧ ∀x.

(
Dog(x) ∧ Loves(r, x) → d = x

)))
Notice that we could also express the final statement via the contrapositive of what is
written, i.e. “anything that isn’t d is either not a dog or not loved by r”. I find this
slightly harder to understand, but it’s still correct:

∃r.
(
Robot(r) ∧ ∃d.

(
Dog(d) ∧ Loves(r, d) ∧ ∀x.

(
d ̸= x → ¬Dog(x) ∨ ¬Loves(r, x)

)))
b. There are at least two dogs. (You can talk about multiple objects by nesting quantifiers and,

if necessary, checking that the two objects you are looking at are not the same. See the Guide
to Logic Translation for more on this.)

We can translate this statement as “there exist two dogs”, or rather: “there is a dog,
and there is a dog that is different from the first dog.”

We translate the first part as follows:

∃x.(Dog(x) ∧ there is a dog that is different from x)

Again, the second part can be translated as an existentially quantified statement:

∃x.
(
Dog(x) ∧ ∃y.(Dog(y) ∧ y ̸= x)

)

Spring 2024 – Page 10/13



CS103ACE Lecture 3-5 Practice Problems

9. Negating Statements in First-Order Logic

Negate each of these first-order logic formulas below. The only negations your final formula should
have are direct negations of predicates. For example, the negation of the formula ∀x. (P (x) → ∃y.
(Q(x) ∧R(y))) could be found by pushing the negation from the outside inward as follows:

¬(∀x. (P (x) → ∃y. (Q(x) ∧R(y))))

∃x. ¬(P (x) → ∃y. (Q(x) ∧R(y)))

∃x. (P (x) ∧ ¬(∃y. (Q(x) ∧R(y))))

∃x. (P (x) ∧ ∀y. ¬(Q(x) ∧R(y)))

∃x. (P (x) ∧ ∀y. (Q(x) → ¬R(y)))

Show every step of the process of pushing the negation into the formula.

a. ∃k.
(
Coder(k) ∧ Athlete(k) ∧ Painter(k)

)
(Hint: Add parentheses to make the inside statement look more like a basic form.)

Here’s one way we could add parentheses:

¬
(
∃k.

(
Coder(k) ∧ (Athlete(k) ∧ Painter(k))

))
∀k. ¬

(
Coder(k) ∧ (Athlete(k) ∧ Painter(k))

)
∀k.

(
Coder(k) → ¬(Athlete(k) ∧ Painter(k))

)
∀k.

(
Coder(k) → ¬Athlete(k) ∨ ¬Painter(k)

)
Note that there are many equivalent statements to the inner statement. Any of these
statements would also work:

∀k.
(
Coder(k) ∧ Athlete(k) → ¬Painter(k)

)
∀k.

(
¬Coder(k) ∨ ¬Athlete(k) ∨ ¬Painter(k))

)
∀k.

(
Coder(k) → (Athlete(k) → ¬Painter(k))

)
b. ∀t.

(
Leafy(t) ∧ Thorny(t) → Plant(t)

)
Note that ∧ takes precedence over→, so the inside statement is equivalent to (Leafy(t)∧
Thorny(t)) → Plant(t). Here’s one approach:

¬
(
∀t.

(
Leafy(t) ∧ Thorny(t) → Plant(t)

))
∃t. ¬

(
Leafy(t) ∧ Thorny(t) → Plant(t)

)

Spring 2024 – Page 11/13



CS103ACE Lecture 3-5 Practice Problems

∃t.
(
Leafy(t) ∧ Thorny(t) ∧ ¬Plant(t)

)
c. ∃r.

(
Silly(r) ↔ ¬Serious(r)

)
There are two negations for ↔ in the table. The one that we apply here leads to having
no negations in the final product:

¬
(
∃r.

(
Silly(r) ↔ ¬Serious(r)

))
∀t. ¬

(
Silly(r) ↔ ¬Serious(r)

)
∀t.

(
Silly(r) ↔ Serious(r)

)
d. ∃u.

(
Unicorn(u)

)
→ ∃h.

(
Horse(h) ∧Magical(h)

)
Here, note that the entire expression has the form p → q, so we start by applying the
negation listed in the propositional logic table.

¬
(
∃u.

(
Unicorn(u)

)
→ ∃h.

(
Horse(h) ∧Magical(h)

))
∃u.

(
Unicorn(u)

)
∧ ¬

(
∃h.

(
Horse(h) ∧Magical(h)

))
Now the expression we’re negating takes exactly one of the four basic forms, leading to
our final answer:

∃u.
(
Unicorn(u)

)
∧ ∀h.

(
Horse(h) → ¬Magical(h)

)
e. ∀x.

(
Person(x) → ∃y. ∃z.

(
CanJuggle(x, y) ∧ ¬CanJuggle(x, z)

))
Here’s one approach:

¬
(
∀x.

(
Person(x) → ∃y. ∃z.

(
CanJuggle(x, y) ∧ ¬CanJuggle(x, z)

)))
∃x. ¬

(
Person(x) → ∃y. ∃z.

(
CanJuggle(x, y) ∧ ¬CanJuggle(x, z)

))
∃x.

(
Person(x) ∧ ¬

(
∃y. ∃z.

(
CanJuggle(x, y) ∧ ¬CanJuggle(x, z)

)))
∃x.

(
Person(x) ∧ ∀y. ∀z.¬

(
CanJuggle(x, y) ∧ ¬CanJuggle(x, z)

))
∃x.

(
Person(x) ∧ ∀y. ∀z.

(
CanJuggle(x, y) → CanJuggle(x, z)

))

Spring 2024 – Page 12/13



CS103ACE Lecture 3-5 Practice Problems

In this last step, again, I chose the negation that leads to the least “not”s, but it would
also be valid to write ¬CanJuggle(x, y) ∨ CanJuggle(x, z).

f. ∀p.
(
Person(p) →

(
∃q.

(
Person(q) ∧ TallerThan(p, q)

))
∨
(
∃q.

(
Person(q) ∧ TallerThan(q, p)

)))
I’m going to define some new “variables”: ⋆ represents the expression ∃q.(Person(q) ∧
TallerThan(p, q)) and ♢ represents the expression ∃q.(Person(q) ∧ TallerThan(q, p)).
Then, we can simplify the negation of the original expression without as many nested
parentheses potentially confusing us:

¬(∀p.(Person(p) → ⋆ ∨ ♢))

∃p.¬(Person(p) → ⋆ ∨ ♢)

∃p.(Person(p) ∧ ¬(⋆ ∨ ♢))

∃p.(Person(p) ∧ ¬⋆ ∧ ¬♢)

Now we just need to figure out what ¬⋆ and ¬♢ are! Here’s the former:

¬(∃q.(Person(q) ∧ TallerThan(p, q)))

∀q.¬(Person(q) ∧ TallerThan(p, q)))

∀q.(Person(q) → ¬TallerThan(p, q))

The latter is worked out in the same way, coming to ∀q.(Person(q) →
¬TallerThan(q, p)).

Putting everything together, our final answer is:

∃p.
(
Person(p) ∧ ∀q.

(
Person(q) → ¬TallerThan(p, q)

)
∧ ∀q.

(
Person(q) →

¬TallerThan(q, p)
))

Key tips for negations:

• Go slowly, one step at a time.

• Understand the parentheses in the formula before you start the process.

• If you have a complicated expression, replace it with a symbol and negate it later.

Spring 2024 – Page 13/13


