More First-Order Logic CS 103ACE Day 4 – 4/15/24

Today's learning goals:

- Understand the 4 first-order logic basic forms
- Translate and interpret nested first-order expressions

$\forall x. \ (A(x) \rightarrow B(x)) \qquad \exists x. \ (A(x) \land B(x))$

$\forall x. \ (A(x) \rightarrow \neg B(x))$

$\exists x. (A(x) \land \neg B(x))$

"All As are Bs""Some As are Bs" $\forall x. (A(x) \rightarrow B(x))$ $\exists x. (A(x) \land B(x))$

"No As are Bs" $\forall x. (A(x) \rightarrow \neg B(x))$ "Some As aren't Bs" $\exists x. (A(x) \land \neg B(x))$

Problem 7: Interpreting nested statements

Translating:

- Work outside in one step at a time
- Every time you see a quantifier, replace it:
 - \circ **3** x. = "there is an x where..."
 - \circ \forall y. = "for every y..."
- Simplify patterns based on the 4 basic forms

Checking if a statement is true:

- Assign specific examples
 - \odot \exists => inner statement must be true for <u>some</u> choice

Problem 8: Translating English to Logic

- Keep asking yourself: Which basic form applies?
 - Can you turn it into a statement about <u>everything</u> in some category (universally quantified) or <u>some things</u> from the category (existentially quantified)?
- One step at a time
- Give names to any entities mentioned in the statement

Special cases: "exactly one", "two different"

Problem 9: Negations

Negations are important for indirect proofs involving first-order definitions

- "Pushing the negation inward" demo
- Replace complicated expressions with symbols
- One step at a time
- To check your work: use truth table tool

Our proofwriting toolkit, now with logic

- To show $\forall x. P(x)...$
 - Have the reader **pick an arbitrary** x.
 - \circ Then, show that P(x) is true.
- To show $\exists x. Q(x)...$
 - You **give a value** for x.
 - \circ Then, show that Q(x) is true for that value of x.
- To show $A(x) \rightarrow B(x)...$
 - Assume that A(x) is true, **Prove** that B(x) is true.
 - Or contrapositive: **Assume** \neg B(x), **Prove** \neg A(x).

Post-section recommendations

- Keep going on Problem Set 2!
- Make sure to look at your Problem Set 1 feedback when it's released
- Recommended extra practice problems for FOL: 4 and 5
- Remember to enroll in ACE!