1. Proofs with Functions and First-Order Properties

a. Let $f: B \rightarrow C$ be a function. We call f left-cancellative if the following property holds for any functions $g: A \rightarrow B$ and $h: A \rightarrow B$:

$$
(\forall a \in A .(f \circ g)(a)=(f \circ h)(a)) \rightarrow(\forall a \in A . g(a)=h(a))
$$

Prove that if f is injective, then f is left-cancellative.
b. Let's say a function $f: A \rightarrow A$ is called idempotent if the following property holds:

$$
\forall x \in A .(f(f(x))=f(x))
$$

Prove that if f is idempotent, either f is defined as $f(x)=x$ or f is not injective.
Key questions: To show an "or" statement, what should we do? How do we show that a function is not injective? What is a first-order logic statement with the meaning " f is defined as $f(x)=x$ "?

2. Injectivity and Surjectivity (challenge problem)

For these problems, we need some notation that won't come up elsewhere in CS 103. Let \mathbb{Z}^{2} be the set $\{(m, n) \mid m \in \mathbb{Z} \wedge n \in \mathbb{Z}\}$. In plain English, this is the set of "ordered pairs" of integers. Some examples of elements in this set are $(103,106)$ and $(-137,0)$. Unlike sets, repeats are allowed, so $(-1,-1)$ is a perfectly valid element of \mathbb{Z}^{2}. Also unlike sets, the order matters, so $(103,106)$ is different from $(106,103)$.

When two ordered pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are equal, we know both that $x_{1}=x_{2}$ and that $y_{1}=y_{2}$.
c. Let $h: \mathbb{Z} \rightarrow \mathbb{Z}$ be an injective function. Define a function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ as follows:

$$
f(x, y)=(h(x), h(x)+h(y))
$$

First, to ensure you understand this definition, consider the case where h is defined as $h(n)=$ $2 n$. Then, evaluate the following:

- $f(1,1)$
- $f(0,-3)$

Then, prove that f is injective. (Write your proof in general, not for our specific choice of $h(n)$ above.)
Hints:

- The elements of the domain and codomain of f are both elements of \mathbb{Z}^{2}, so they are both ordered pairs.
- There are two ways to structure a proof of injectivity. In this case, one of them leads to a much easier proof. If you're not finding the problem approachable, try switching your approach!
- You'll need to use the fact that h is injective twice.
d. Let $h: \mathbb{Z} \rightarrow \mathbb{Z}$ be a surjective function. Define a function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ as follows:

$$
f(x, y)=h(x)+h(y)
$$

Prove that f is surjective.

3. Set Union/Intersection Proofs

Let A, B, and C be arbitrary sets.
a. Prove that set union is distributive: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
b. Prove that set intersection is distributive: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

4. Set-Builder Notation and Power Set Proofs

Formally, for sets S and $T, S-T=\{x \mid x \in S \wedge x \notin T\}$. We can use this definition of set difference to practice writing proofs that use set-builder notation.
a. Prove that $A-B \subseteq A$.
b. Prove that if $\wp(A) \subseteq C$, then $\wp(A-B) \subseteq C$. Feel free to use the previous part and the fact that, for any sets R, S, and T, if $S \subseteq T$ and $T \subseteq R$, then $S \subseteq R$.
c. Prove that $A \cap B=A-(A-B)$.

