1. Proofs with Functions and First-Order Properties

a. Let $f: B \rightarrow C$ be a function. We call f left-cancellative if the following property holds for any functions $g: A \rightarrow B$ and $h: A \rightarrow B$:

$$
(\forall a \in A .(f \circ g)(a)=(f \circ h)(a)) \rightarrow(\forall a \in A . g(a)=h(a))
$$

Prove that if f is injective, then f is left-cancellative.
Proof: Let $f: B \rightarrow C$ be an injective function. We'll show that f is left-cancellative. To do this, take any functions $g: A \rightarrow B$ and $h: A \rightarrow B$ where, for all $a \in A$, we have that $(f \circ g)(a)=(f \circ h)(a)$. Pick an arbitrary $a \in A$, and we will show that $g(a)=h(a)$. Equivalently, thanks to f being injective, we will show that $f(g(a))=f(h(a))$. To do so, consider that $f(g(a))=(f \circ g)(a)$ and $f(h(a))=(f \circ h)(a)$. By our assumption about $(f \circ g)$ and $(f \circ h)$, this means that $f(g(a))=f(h(a))$ as required, and f is left-cancellative.
b. Let's say a function $f: A \rightarrow A$ is called idempotent if the following property holds:

$$
\forall x \in A .(f(f(x))=f(x))
$$

Prove that if f is idempotent, either f is defined as $f(x)=x$ or f is not injective.
Key questions: To show an "or" statement, what should we do? How do we show that a function is not injective? What is a first-order logic statement with the meaning " f is defined as $f(x)=x$ "?

One way to set up this proof: Overall, this theorem is an implication, so we should assume the antecedent and prove the consequent. In this problem, this means we assume f is idempotent and show either f is defined as $f(x)=x$ or f is not injective. This want-to-show statement involves "or", so we can set it up by showing that if f is not defined as $f(x)=x$, then f is not injective. Again, this is an implication, so we'll assume f is not defined as $f(x)=x$, and prove that f is not injective. (Note: We could also show this implication by contrapositive, but I'll proceed with a direct proof to demonstrate a proof of non-injectivity.) First, $f(x)=x$ means that $f(x)=x$ for all $x \in A$, so assuming that f is NOT defined as $f(x)=x$ means that we assume there exists an $x \in A$ where $f(x) \neq x$. Finally, to show that f is not injective, we need to find two values in f 's domain that map to the same value in f 's codomain.
Proof: Let $f: A \rightarrow B$ be an idempotent function. We'll show that either f is defined as $f(x)=x$ or f is not injective; to do so, assume that f is not defined as $f(x)=x$ and we'll show that f is not injective. To do so, we'll show that for some elements $x_{1} \in A$ and $x_{2} \in A, x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Because f is not defined as $f(x)=x$, we know that there is some $a \in A$ where $f(a) \neq a$. Consider $x_{1}=a$ and $x_{2}=f(a)$, meaning that $x_{1} \neq x_{2}$. We can see that $f\left(x_{1}\right)=f(a)$ and $f\left(x_{2}\right)=f(f(a))$, and because f is an idempotent function, we see that $f(f(a))=f(a)$, meaning $f\left(x_{1}\right)=f\left(x_{2}\right)$. Overall, this choice of x_{1} and x_{2} demonstrates that f is not injective, as required.

2. Injectivity and Surjectivity (challenge problem)

For these problems, we need some notation that won't come up elsewhere in CS 103. Let \mathbb{Z}^{2} be the set $\{(m, n) \mid m \in \mathbb{Z} \wedge n \in \mathbb{Z}\}$. In plain English, this is the set of "ordered pairs" of integers. Some examples of elements in this set are $(103,106)$ and $(-137,0)$. Unlike sets, repeats are allowed, so $(-1,-1)$ is a perfectly valid element of \mathbb{Z}^{2}. Also unlike sets, the order matters, so $(103,106)$ is different from $(106,103)$.
When two ordered pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are equal, we know both that $x_{1}=x_{2}$ and that $y_{1}=y_{2}$.
c. Let $h: \mathbb{Z} \rightarrow \mathbb{Z}$ be an injective function. Define a function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ as follows:

$$
f(x, y)=(h(x), h(x)+h(y))
$$

First, to ensure you understand this definition, consider the case where h is defined as $h(n)=$ $2 n$. Then, evaluate the following:

- $f(1,1)$

$$
f(1,1)=(h(1), h(1)+h(1))=(2,4)
$$

- $f(0,-3)$

$$
f(0,-3)=(h(0), h(0)+h(-3))=(0,-6)
$$

Then, prove that f is injective. (Write your proof in general, not for our specific choice of $h(n)$ above.)

Hints:

- The elements of the domain and codomain of f are both elements of \mathbb{Z}^{2}, so they are both ordered pairs.
- There are two ways to structure a proof of injectivity. In this case, one of them leads to a much easier proof. If you're not finding the problem approachable, try switching your approach!
- You'll need to use the fact that h is injective twice.

Proof: Pick two arbitrary elements of $\mathbb{Z}^{2},(x, y)$ and (a, b), where $f(x, y)=f(a, b)$. We will show that $(x, y)=(a, b)$.
Since we know that $(h(x), h(x)+h(y))=(h(a), h(a)+h(b))$, we can see that

$$
h(x)=h(a)
$$

and

$$
h(x)+h(y)=h(a)+h(b) .
$$

Substituting $h(a)$ for $h(x)$ in the second equation, we see that $h(y)=h(b)$.
Because h is injective and $h(x)=h(a)$, we know that $x=a$. And because h is injective and $h(y)=h(b)$, we know that $y=b$. We can conclude that $(x, y)=(a, b)$, and f is injective, which is what we needed to show.
d. Let $h: \mathbb{Z} \rightarrow \mathbb{Z}$ be a surjective function. Define a function $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ as follows:

$$
f(x, y)=h(x)+h(y)
$$

Prove that f is surjective.
Proof: Pick any $b \in \mathbb{Z}$.
Since h is surjective and 0 and b are integers, we know that there is an integer x_{1} where $h\left(x_{1}\right)=0$ and there is an integer x_{2} where $h\left(x_{2}\right)=b$.

Now, consider $a=\left(x_{1}, x_{2}\right)$. We will show that $f(a)=b$. To see this, notice that

$$
\begin{aligned}
f(a) & =f\left(x_{1}, x_{2}\right) \\
& =h\left(x_{1}\right)+h\left(x_{2}\right) \\
& =0+b \\
& =b .
\end{aligned}
$$

Therefore, f is surjective.

These problems come from Professor Margaret Fleck at the University of Illinois's CS 173 class.

3. Set Union/Intersection Proofs

Let A, B, and C be arbitrary sets.
a. Prove that set union is distributive: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Proof: Let A, B, and C be sets. We'll show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
First, we'll show that $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$. Consider any element $x \in$ $A \cup(B \cap C)$. We'll show that x is in $(A \cup B) \cap(A \cup C)$. We have two cases: we know that x is either in A or in $B \cap C$. If x is in A, then it is in both $(A \cup B)$ and in $(A \cup C)$. If x is in $B \cap C$, then x is in both B and C, so x is also in $A \cup B$ and $A \cup C$. In either case, we've shown that x is in $(A \cup B) \cap(A \cup C)$.

Next, we'll show that $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$. Consider any element x in $(A \cup B) \cap(A \cup C)$. We'll show that x is in $A \cup(B \cap C)$. We know that x is in both $A \cup B$ and $A \cup C$, so we have two cases: either x is in A or x is in B, and either x is in A or x is in C. Then, either x is in A, or x must be in both B and in C, so it is in $A \cup(B \cap C)$.
We've shown that $A \cup(B \cap C)$ and $(A \cup B) \cap(A \cup C)$ are subsets of each other, as required.
b. Prove that set intersection is distributive: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Proof: Let A, B, and C be sets. We'll show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
First, we'll show that $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$. Consider any element $x \in$ $A \cap(B \cup C)$. We'll show that x is in $(A \cap B) \cup(A \cap C)$. We know that x is in A and that x is in $B \cup C$, i.e. is either in B or in C, so we have two cases. If x is in B, then x is in $A \cap B$. If x is in C, then x is in $A \cap C$. In either case, we can see that $x \in(A \cap B) \cup(A \cap C)$.
Next, we'll show that $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$. Consider any element x in $(A \cap B) \cup(A \cap C)$. We'll show that x is in $A \cap(B \cup C)$. We know that x is in either $A \cap B$ or $A \cap C$, so we have multiple cases. If x is in $A \cap B$, then we know that x is in A and x is in B, meaning that x is also in $B \cup C$. If x is in $A \cap C$, then we know that x is in a and x is in C, meaning that x is also in $B \cup C$. Either way, we can see that $x \in A \cap(B \cup C)$.

We've shown that $(A \cap B) \cup(A \cap C)$ and $A \cap(B \cup C)$ are subsets of each other, as required.

4. Set-Builder Notation and Power Set Proofs

Formally, for sets S and $T, S-T=\{x \mid x \in S \wedge x \notin T\}$. We can use this definition of set difference to practice writing proofs that use set-builder notation.
a. Prove that $A-B \subseteq A$.

Proof: We'll show that $A-B \subseteq A$. To do so, pick an arbitrary element $x \in A-B$. We'll show that $x \in A$. By the definition of set subtraction, we know that $x \in A$ and $x \notin B$, so x is in A, which is what we wanted to show.
b. Prove that if $\wp(A) \subseteq C$, then $\wp(A-B) \subseteq C$. Feel free to use the previous part and the fact that, for any sets R, S, and T, if $S \subseteq T$ and $T \subseteq R$, then $S \subseteq R$.

Proof: Assume that $\wp(A) \subseteq C$. We'll show that $\wp(A-B) \subseteq C$. To do so, pick an arbitrary element $S \in \wp(A-B)$. We'll show that it is also in C.
Since $S \in \wp(A-B)$, we know that $S \subseteq A-B$. Because we know that $A-B \subseteq A$ as proved in the previous part, this also means that $S \subseteq A$. By the definition of power set, then, we know that $S \in \wp(A)$. And since we assumed $\wp(A) \subseteq C$, that means that $S \in C$, which is what we wanted to show.
c. Prove that $A \cap B=A-(A-B)$.

Proof: We'll show that $A \cap B=A-(A-B)$. We'll do this by showing that $A \cap B \subseteq$ $A-(A-B)$ and that $A-(A-B) \subseteq A \cap B$.
First, we'll show that $A \cap B \subseteq A-(A-B)$. Pick an arbitrary element $x \in A \cap B$. We'll show that x is also in $A-(A-B)$ by showing that $x \in A$ and $x \notin A-B$. Since x is in $A \cap B$, we know that x is in A, and we also know that x is in B, meaning that it's not in $A-B$. Then, we've shown that $A \cap B \subseteq A-(A-B)$.
Next, we'll show that $A-(A-B) \subseteq A \cap B$. Pick an arbitrary element $x \in A-(A-B)$. We'll show that x is also in $A \cap B$ by showing that $x \in A$ and $x \in B$. Because x is in $A-(A-B)$, we know that x is in A. We also know that x is not in $A-B$, meaning that it either is in B or is not in A; however, since we have previously seen that x is in A, we see that x must be in B. Then, we've shown that x is in both A and B, so we see that $x \in A \cap B$ and $A \cap B \subseteq A-(A-B)$.
We conclude that $A \cap B=A-(A-B)$ as required.

