Functions

CS 103ACE Day 5 – 4/19/24

Agenda:

- Think-pair-share: injections and surjections
- Proofs on function composition
- How to prepare for the midterm

Announcements

- Please ask questions about pset 1 feedback / pset 2!
- Add/drop deadline is tonight! Check your study list!
- Midterm 1 ACE review sessions:
 - Evening of Friday, 4/26
 - Evening of Sunday, 4/28
 - I'm still booking rooms, details will hopefully be finalized in next Monday's section
 - Stanley will also host a Q&A session sometime before the exam (probably Monday 4/29)
- Resources: <u>Academic Coaching</u>, <u>CTL Tutoring</u>

		To prove that this is true	If you <i>assume</i> this is true
Keep this table open!	$\forall x. A$	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.	Initially, do nothing . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .
	$\exists x. A$	Find an x where A is true. Then prove that A is true for that specific choice of x.	Introduce a variable x into your proof that has property A.
V	$A \rightarrow B$	Assume <i>A</i> is true, then prove <i>B</i> is true.	Initially, <i>do nothing</i> . Once you know <i>A</i> is true, you can conclude <i>B</i> is also true.
	$A \land B$	Prove A. Then prove B.	Assume A. Then assume B.
	A v B	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)	Consider two cases. Case 1: A is true. Case 2: B is true.
	$A \leftrightarrow B$	Prove $A \rightarrow B$ and $B \rightarrow A$.	Assume $A \rightarrow B$ and $B \rightarrow A$.
	$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Injectivity

$$\forall a_1 \in A. \forall a_2 \in A. (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$$

How to prove injectivity 1:

- Pick a_1 and a_2 in A where $a_1 \neq a_2$
- We will show that $f(a_1) \neq f(a_2)$

Read more: Proof Template

Injectivity

$$\forall a_1 \in A. \forall a_2 \in A. (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$$

How to prove injectivity 2:

- Pick a_1 and a_2 in A where $f(a_1) = f(a_2)$
- We will show that $a_1 = a_2$

Read more: Proof Template

Surjectivity

$$\forall b \in B. \exists a \in A. (f(a) = b)$$

How to prove surjectivity:

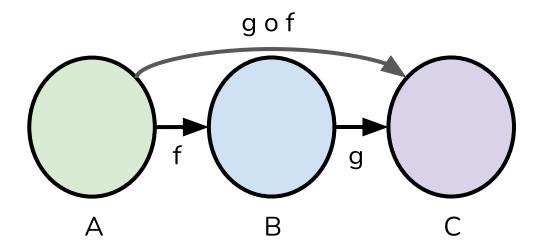
- Pick b in B
- Show that there exists a in A where f(a) = b
 - To do so, give a value for a
 - Then explain why f(a) = b

Read more: Proof Template

Start thinking about Midterm 1

Midterm 1 is on April 30, in 11 days

More info will be released next week


Covers material from lectures 0-5 and problem sets 1-2 (everything up to and including first-order logic), so **you can start studying now**

Start thinking about Midterm 1

What can you do right now to prepare? Make a study plan!

- Plan to study gradually decide how much time you can spend studying each day
- List all topics from lectures 0-5/psets 1-2, and decide what you are "confident" and "not confident" in
- Spend time learning and practicing your "not confident" topics:
 - do extra ACE problems
 - re-write proofs from lecture or the psets without looking at the solutions
 - come to office hours or ask me questions on Slack

Function Composition

Tip: When substituting into definitions, treat (g o f) as one unit / a function name.

When expanding definitions or applying a function, then you can substitute g(f(x)) for $(g \circ f)(x)$

Post-section recommendations

- Check your study list on Axess before 5pm!
- Start early on Problem Set 3!
- Make a study plan for Midterm 1!