Graphs CS 103ACE Day 6 – 4/26/24

Agenda:

- Review graph definitions
- Understand how to apply first-order definitions on graphs

Announcements

- Take care of yourself! I'm here to support you this weekend :)
- Sign up for an optional 1:1 at <u>calendly.com/103ace/week4</u> (or let me know if you can't make any of the times)
- More resources on the course website: set-builder notation guide, lectures 0-5 symbols reference

Midterm 1 Upcoming Events

- **Friday**: ACE review session 1
- **Saturday**: no ACE events, but feel free to Slack / email / post on Ed with any questions as you review!
- **Sunday**: ACE review session 2
- Monday: ACE section and office hours, Stanley's Q&A
- Things to try to do this weekend:
 - Make a notes sheet
 - Take one of the practice exams on paper in a test-like environment
- Tip: use Tuesday for handling other things in your life, chilling, and managing test anxiety!

Graphs

Graphs represent nodes (or vertices) connected by edges.

Graphs

Graphs represent nodes (or vertices) connected by edges.

Graphs Concept Check

An undirected graph is formalized as **(V, E)** where:

- V is the set of all vertices
- E is the set of all edges
- An edge is an unordered pair of two vertices

What does |V| mean? What is |V| for this graph?

What does |E| mean? What is |E| for this graph?

- Two nodes u, v in a graph G = (V, E) are **adjacent** if $\{u, v\} \in E$
- Walk: a list of nodes where each node is adjacent to the next
 N nodes → walk is length N-1
- Which of these are valid walks?
 - CAN, CAT, SAT, RAT, RAN, CAN
 - CAN
 - \circ RAT, MAN

- Two nodes u, v in a graph G = (V, E) are **adjacent** if $\{u, v\} \in E$
- Walk: a list of nodes where each node is adjacent to the next
 N nodes → walk is length N-1
- Special types of walk!
 - Closed Walk: walk back to the same node you started with
 - $\circ~$ e.g. CAN, CAT, SAT, RAT, RAN, CAN

- Two nodes u, v in a graph G = (V, E) are **adjacent** if $\{u, v\} \in E$
- Walk: a list of nodes where each node is adjacent to the next
 N nodes → walk is length N-1
- Special types of walk!
 - **Closed Walk**: walk back to the same node you started with
 - **Path:** walk with no repeats
 - Cycle: a closed walk with no repeats of nodes or edges, except it goes back to the same node it started with (think "closed path")

Can you come up with a length 7 cycle?

Graph Connectedness

- A node v is **reachable** from a node u if there is a <u>path</u> from u to v
- A graph is **connected** if any node is reachable from any other
- A **connected component** is a set of nodes that are all reachable from each other

Is this graph connected?

How many connected components are there?

Vertex Covers

A **vertex cover** C is a subset of nodes such that:

 $\forall x \in V. \forall y \in V. (\{x, y\} \in E \rightarrow (x \in C \lor y \in C))$ ("Every edge has at least one endpoint in C.")

How would we show something is not a vertex cover?

Independent Sets

An independent set I is a subset of nodes such that

$\forall u \in I. \forall v \in I. \{u, v\} \notin E.$ ("No two nodes in I are adjacent.")

How would we show something is not a vertex cover?

Complements

A graph G's complement G^{C} adds edges between any nodes that didn't have an edge in G, and removes all the original edges.

What's the complement of this graph?

Complements

A graph G's complement G^{C} adds edges between any nodes that didn't have an edge in G, and removes all the original edges.

What's the complement of this graph?

Post-section recommendations

• Review for the midterm, and keep me in the loop!