CS103ACE Lecture 12-13 Extra Problems

1. Recurrence Relations: More Fibonacci Sums

The sums of squares of Fibonacci numbers also have a bunch of cool properties. Specifically, for
any n € N, the following statement is true:

P4+ Fl 4+ . .+ F2=F,F,.

Here’s a graphical intuition for where this comes from:

13
21

TA]

Prove this statement by induction.

a. What is the predicate P(n) we should use?

The predicate P(n) should be the equation in the problem statement: Fy+F2+...+F?> =
FoFpuy.

b. What natural numbers are we trying to prove P(n) for? What base case and step size does

this suggest?

Since we are trying to prove P(n) for all natural numbers, a base case of 0 and step size

of 1 is a good starting point.

c. What will you assume as the inductive hypothesis and want to show for the inductive step?
We'll assume P(k), which says that
FP+F2+ ..+ F2=FFpp,.

We want to show P(k + 1), which says that

Fe+ FP + ..+ Fly = Fe1 Frypo.
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Proof: Let P(n) be the statement “Fg+ F2+...+ F? = F,F,,1.” We will prove by induction
that P(n) holds for all n € N, from which the theorem follows.

As our base case, we will prove P(0), that Fy = FyF;. To see this, note that Fy = 0, so F?
= 0 and FyF; = 0. Therefore, we see that Fy = FyF} as required.

For our inductive step, assume for some arbitrary &k € N that P(k) is true, meaning that
F+ F2+ ...+ F? = F},Fy,1. We need to prove that P(k + 1) is true, meaning that we need
to show F§ + F{ + ...+ F | = Fry1Fito.

To see this, notice that
P+ Fl 4+ F = (Fy+ FP + ..+ B+ Fy
= F}.Fy1 + F; (by our IH)

= (Fpy1) (F + Frq1)
= Fri1Fiqo.

Therefore, we see that P(k 4 1) is true, as required.

Spring 2024 — Page 2/6



CS103ACE Lecture 12-13 Extra Problems

2. Induction with Larger Step Sizes: Socks in a Box

Consider this game for two players, which we will call the n-Sock Game. Begin with a box with n
socks in it. The first player takes out between 1 and 10 socks. Then the second player takes out
between 1 and 10 socks. This process repeats until the box is empty. At that point, the player who
has the next turn loses, since they can’t take out between 1 and 10 socks, and the other player wins.

Prove this theorem by induction: For any natural number n that is a multiple of 11, there is a
strategy that the second player can use to always win the n-Sock Game. The multiples of 11 are
the numbers 0, 11, 22, 33, and so on. Answer these questions before starting:

a. How can we convert this theorem into a statement that some predicate P(n) is true for some
natural numbers? What is the predicate P(n) and what numbers do we want to show P(n)
is true for? What base case and step size does this suggest?

We can have P(n) be the predicate “there is a strategy that the second player can use
to always win the n-Sock Game”. We want to show that P(n) is true for all natural
numbers that are a multiple of 11, so we can start with a base case of P(0) and prove
P(k+11) in our inductive step. This form of the predicate is what I'll be using for the
rest of the proof.

Alternatively, we could have P(n) be the predicate “there is a strategy that the second
player can use to always win the 11n-Sock Game”. Then, we would want to show that
P(n) is true for all natural numbers, so we can start with a base case of P(0) and prove
P(k + 1) in our inductive step.

b. Are we “inducting up” or “inducting down”? What will you assume and want to show for
the inductive step?

In the inductive step, we will assume P(k) is true and show that P(k + 11) is true.

Since P(n) is an existentially quantified statement — “there is a strategy” — we will want
to build up. That is, we will start by assuming there is a winning strategy for the k-Sock
Game and try to get from that strategy to a winning strategy for the k4 11-Sock Game.
Specifically, it turns out that there’s a specific strategy that works, so we’ll modify it
to specify what the strategy is that we need to follow.

Proof: Let P(n) be the statement “there is a strategy that the second player can use to
always win the n-Sock Game”. We will show by induction that P(n) is true for all natural
numbers that are a multiple of 11, from which the theorem follows.

For our base case, we will show P(0), that there is a strategy that the second player can use
so that there are 0 socks in the box before the first player’s turn. Notice that no matter what
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the first player does, the box will have 0 socks before the first player’s first turn, so the second
player will always win the 0-Sock Game.

For our inductive step, pick an arbitrary k& € N where k is a multiple of 11. Assume P(k),
namely that the second player has a strategy to win the k-Sock Game. We'll show P(k+11),
namely that the second player has a strategy to win the (k + 11)-Sock Game.

This strategy is as follows: the second player uses their strategy to win the k-Sock Game.
After following this strategy, the box will be left with 11 socks in it before one of the first
player’s turns. Then, say the first player takes out n socks from the box, where 1 < n < 10
by the rules of the game, leaving the box with 11 — n socks in it. The second player can then
remove 11 — n socks, leaving the box empty. Since 1 < n < 10, we see that 1 < 11 —n < 10,
so this is a valid move. Because this placement leaves the box empty prior to the first player’s
next turn, the first player loses and the second player wins. Then, P(k+ 1) holds, completing
the induction.
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3. Induction with Multiple Variables: Factorials!

Given a natural number n, the notation n!, pronounced “n factorial”, represents the product 1-2-...-n.
Formally, we can define n! using a recurrence relation:

0l=1 (n+1)!=(n+1)-n!

We'll prove the following theorem by induction: For any m,n € N, we have that (m!)(n!) < (m+n)!.
To do this, we'll let P(n) be the statement “for any m € N, we have that (m!)(n!) < (m +n)!”.

a. Explain why proving that P(n) is true for any n € N is the same as proving the theorem.

If P(n) is true for all natural numbers n, then it means that for any choice of n, the
following is true: for any choice of m, we have m!n! < (m + n)!. This is the same as
what’s stated in the theorem.

b. Explain why including “for any m € N” in the statement of P(n) does not violate the Induction
Proofwriting Checklist item on variable scoping.

The proofwriting checklist item only applies to the variable that P is specified around.
In this case, since we're using P(n), it would be wrong to include “for all n € N”. But
m is a separate variable, which does need to be introduced before we can use it, so it’s
okay to include a quantifier for it.

c. What natural numbers do we need to prove P(n) for? What base case and step size does this
suggest we use?

Since we want to prove that P(n) is true for any natural number n, we can start at
P(0) and use a step size of 1.

d. Are we “inducting up” or “inducting down”? What will you assume as the inductive hypoth-
esis and want to show for the inductive step?

Because we're using a step size of 1, we’ll assume P(k) and prove P(k + 1).

Since P(n) is a universally quantified statement, we will be “inducting down”: since we
want to prove that for all natural numbers m, the equation with k£ + 1 holds, we will
pick an arbitrary natural number m, then try to find a way to transform the expression
involving k + 1 into the expression involving k& so that we can apply our inductive
hypothesis.
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Proof: Let P(n) be the statement “for any m € N, we have that m!n! < (m + n)! is true.”
We will prove, by induction, that P(n) is true for all n € N, from which the theorem follows.

For our base case, we prove P(0), namely that for any m € N, we have m!0! < (m +0)!. Pick

a natural number m, and notice that

ml0l =m!-1=m!=(m+0)!

Therefore, we know that m!0! < (m + 0)!, as required.

For our inductive step, pick a k € N and assume that P(k) holds, so for any m € N, we know
that mlk! < (m+k)!. We will prove P(k+1): for any m € N, we have m!(k+1)! < (m+k+1)L
To do this, start by picking an m € N. Then we can see that:

m!(k+ 1) =mlkl(k +1)
< (m+k)\(k+1) (by the IH)
<(m+k)!(m+k+1)
=(m+k+1)

This tells us that m!(k 4+ 1)! < (m + k+ 1)!, so P(k + 1) holds, completing the induction. H
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