
CS103ACE Lecture 12-13 Extra Problems

1. Recurrence Relations: More Fibonacci Sums

The sums of squares of Fibonacci numbers also have a bunch of cool properties. Specifically, for
any n ∈ N, the following statement is true:

F 2
0 + F 2

1 + ...+ F 2
n = FnFn+1.

Here’s a graphical intuition for where this comes from:

Prove this statement by induction.

a. What is the predicate P (n) we should use?

The predicate P (n) should be the equation in the problem statement: F 2
0+F 2

1+...+F 2
n =

FnFn+1.

b. What natural numbers are we trying to prove P (n) for? What base case and step size does
this suggest?

Since we are trying to prove P (n) for all natural numbers, a base case of 0 and step size
of 1 is a good starting point.

c. What will you assume as the inductive hypothesis and want to show for the inductive step?

We’ll assume P (k), which says that

F 2
0 + F 2

1 + ...+ F 2
k = FkFk+1.

We want to show P (k + 1), which says that

F 2
0 + F 2

1 + ...+ F 2
k+1 = Fk+1Fk+2.
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Proof: Let P (n) be the statement “F 2
0 +F 2

1 + ...+F 2
n = FnFn+1.” We will prove by induction

that P (n) holds for all n ∈ N, from which the theorem follows.

As our base case, we will prove P (0), that F 2
0 = F0F1. To see this, note that F0 = 0, so F 2

0

= 0 and F0F1 = 0. Therefore, we see that F 2
0 = F0F1 as required.

For our inductive step, assume for some arbitrary k ∈ N that P (k) is true, meaning that
F 2
0 + F 2

1 + ...+ F 2
k = FkFk+1. We need to prove that P (k + 1) is true, meaning that we need

to show F 2
0 + F 2

1 + ...+ F 2
k+1 = Fk+1Fk+2.

To see this, notice that

F 2
0 + F 2

1 + ...+ F 2
k+1 = (F 2

0 + F 2
1 + ...+ F 2

k ) + F 2
k+1

= FkFk+1 + F 2
k+1 (by our IH)

= (Fk+1)(Fk + Fk+1)

= Fk+1Fk+2.

Therefore, we see that P (k + 1) is true, as required.
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2. Induction with Larger Step Sizes: Socks in a Box

Consider this game for two players, which we will call the n-Sock Game. Begin with a box with n
socks in it. The first player takes out between 1 and 10 socks. Then the second player takes out
between 1 and 10 socks. This process repeats until the box is empty. At that point, the player who
has the next turn loses, since they can’t take out between 1 and 10 socks, and the other player wins.

Prove this theorem by induction: For any natural number n that is a multiple of 11, there is a
strategy that the second player can use to always win the n-Sock Game. The multiples of 11 are
the numbers 0, 11, 22, 33, and so on. Answer these questions before starting:

a. How can we convert this theorem into a statement that some predicate P (n) is true for some
natural numbers? What is the predicate P (n) and what numbers do we want to show P (n)
is true for? What base case and step size does this suggest?

We can have P (n) be the predicate “there is a strategy that the second player can use
to always win the n-Sock Game”. We want to show that P (n) is true for all natural
numbers that are a multiple of 11, so we can start with a base case of P (0) and prove
P (k+11) in our inductive step. This form of the predicate is what I’ll be using for the
rest of the proof.

Alternatively, we could have P (n) be the predicate “there is a strategy that the second
player can use to always win the 11n-Sock Game”. Then, we would want to show that
P (n) is true for all natural numbers, so we can start with a base case of P (0) and prove
P (k + 1) in our inductive step.

b. Are we “inducting up” or “inducting down”? What will you assume and want to show for
the inductive step?

In the inductive step, we will assume P (k) is true and show that P (k + 11) is true.

Since P (n) is an existentially quantified statement – “there is a strategy” – we will want
to build up. That is, we will start by assuming there is a winning strategy for the k-Sock
Game and try to get from that strategy to a winning strategy for the k+11-Sock Game.
Specifically, it turns out that there’s a specific strategy that works, so we’ll modify it
to specify what the strategy is that we need to follow.

Proof: Let P (n) be the statement “there is a strategy that the second player can use to
always win the n-Sock Game”. We will show by induction that P (n) is true for all natural
numbers that are a multiple of 11, from which the theorem follows.

For our base case, we will show P (0), that there is a strategy that the second player can use
so that there are 0 socks in the box before the first player’s turn. Notice that no matter what
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the first player does, the box will have 0 socks before the first player’s first turn, so the second
player will always win the 0-Sock Game.

For our inductive step, pick an arbitrary k ∈ N where k is a multiple of 11. Assume P (k),
namely that the second player has a strategy to win the k-Sock Game. We’ll show P (k+11),
namely that the second player has a strategy to win the (k + 11)-Sock Game.

This strategy is as follows: the second player uses their strategy to win the k-Sock Game.
After following this strategy, the box will be left with 11 socks in it before one of the first
player’s turns. Then, say the first player takes out n socks from the box, where 1 ≤ n ≤ 10
by the rules of the game, leaving the box with 11−n socks in it. The second player can then
remove 11− n socks, leaving the box empty. Since 1 ≤ n ≤ 10, we see that 1 ≤ 11− n ≤ 10,
so this is a valid move. Because this placement leaves the box empty prior to the first player’s
next turn, the first player loses and the second player wins. Then, P (k+1) holds, completing
the induction. ■
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3. Induction with Multiple Variables: Factorials!

Given a natural number n, the notation n!, pronounced “n factorial”, represents the product 1·2·...·n.
Formally, we can define n! using a recurrence relation:

0! = 1 (n+ 1)! = (n+ 1) · n!

We’ll prove the following theorem by induction: For anym,n ∈ N, we have that (m!)(n!) ≤ (m+n)!.
To do this, we’ll let P (n) be the statement “for any m ∈ N, we have that (m!)(n!) ≤ (m+ n)!”.

a. Explain why proving that P (n) is true for any n ∈ N is the same as proving the theorem.

If P (n) is true for all natural numbers n, then it means that for any choice of n, the
following is true: for any choice of m, we have m!n! ≤ (m + n)!. This is the same as
what’s stated in the theorem.

b. Explain why including “for anym ∈ N” in the statement of P (n) does not violate the Induction
Proofwriting Checklist item on variable scoping.

The proofwriting checklist item only applies to the variable that P is specified around.
In this case, since we’re using P (n), it would be wrong to include “for all n ∈ N”. But
m is a separate variable, which does need to be introduced before we can use it, so it’s
okay to include a quantifier for it.

c. What natural numbers do we need to prove P (n) for? What base case and step size does this
suggest we use?

Since we want to prove that P (n) is true for any natural number n, we can start at
P (0) and use a step size of 1.

d. Are we “inducting up” or “inducting down”? What will you assume as the inductive hypoth-
esis and want to show for the inductive step?

Because we’re using a step size of 1, we’ll assume P (k) and prove P (k + 1).

Since P (n) is a universally quantified statement, we will be “inducting down”: since we
want to prove that for all natural numbers m, the equation with k + 1 holds, we will
pick an arbitrary natural number m, then try to find a way to transform the expression
involving k + 1 into the expression involving k so that we can apply our inductive
hypothesis.
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Proof: Let P (n) be the statement “for any m ∈ N, we have that m!n! ≤ (m + n)! is true.”
We will prove, by induction, that P (n) is true for all n ∈ N, from which the theorem follows.

For our base case, we prove P (0), namely that for any m ∈ N, we have m!0! ≤ (m+0)!. Pick
a natural number m, and notice that

m!0! = m! · 1 = m! = (m+ 0)!

Therefore, we know that m!0! ≤ (m+ 0)!, as required.

For our inductive step, pick a k ∈ N and assume that P (k) holds, so for any m ∈ N, we know
thatm!k! ≤ (m+k)!. We will prove P (k+1): for anym ∈ N, we havem!(k+1)! ≤ (m+k+1)!.
To do this, start by picking an m ∈ N. Then we can see that:

m!(k + 1)! = m!k!(k + 1)

≤ (m+ k)!(k + 1) (by the IH)

< (m+ k)!(m+ k + 1)

= (m+ k + 1)!

This tells us that m!(k + 1)! ≤ (m+ k + 1)!, so P (k + 1) holds, completing the induction. ■
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