1. Nonregular Languages Review

a. What problems do nonregular languages correspond to?
b. Intuitively, why is $E=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ not regular? Meanwhile, intuitively, why is the language $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right.$ and $\left.n \leq 103\right\}$ regular?
c. For some language L over Σ and strings x and y, the formal definition of the statement " x and y are distinguishable relative to $L^{\prime \prime}$, denoted by $x \not 三_{L} y$, is $\exists w \in \Sigma^{*}$. $(x w \in L \leftrightarrow y w \notin L)$. Explain this definition in plain English.
d. Explain the definition of a distinguishing set for $L: \forall x \in S . \forall y \in S .\left(x \neq y \rightarrow x \not \equiv_{L} y\right)$

Given an arbitrary language, what is the smallest distinguishing set for it?
e. For the language $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$, give an example of two strings x and y where $x \not \equiv_{L} y$ is true. Give an example of two strings x and y where $x \not \equiv_{L} y$ is false.

2. Proving Languages are Not Regular

The Myhill-Nerode theorem says the following:
Let L be a language over Σ. If there is a set $S \in \Sigma^{*}$ such that

- S contains infinitely many strings, and
- every pair of distinct strings $x, y \in S$ are distinguishable relative to L, that is, $x \not \equiv_{L} y$, then L is not a regular language.
a. Explain intuitively why S has to be an infinite set for this theorem to work.
b. Does S have to be a subset of L ? Why or why not?
c. Give an example of a distinguishing set for the language $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$.
d. Let's practice using the theorem. Let $\Sigma=\{a, b\}$ and let $L=\left\{b^{n} a^{m} \mid n, m \in \mathbb{N}\right.$ and $\left.n \neq m\right\}$.
(1) Explain why L is not the complement of the language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$.
(2) Give an intuitive justification for why L isn't regular - what would we need to "remember" that would not fit in a finite amount of memory?
(3) Use the Myhill-Nerode theorem to prove that L isn't regular. You'll need to find an infinite set of strings that are pairwise distinguishable relative to L. Finding this set is the difficult part of any nonregular language proof. Think of some category of strings that would have to be treated differently by any DFA for L, then see what happens if you gather all of them together into a set.

3. Writing Regular Expressions

Here are some tips for writing regular expressions:

- Think about ways to simplify the problem. Is there a choice between multiple options, which you could represent with \cup ? Is there some way to split strings in this language into multiple parts or sections, which you could concatenate?
- Try writing out example strings in the language. A regex can only generate arbitrarily long strings using the * operator. Look out for a repeating pattern that you can star.

To practice with regular expressions, write a regular expression for each of these languages.
a. Let $\Sigma=\{a, b, c\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ ends in $\left.c a b\right\}$.
b. Let $\Sigma=\{a, b\}$ and let $L=\left\{w \in \Sigma^{*} \mid w \neq \varepsilon\right.$ and the first and last character of w are the same $\}$.
c. Let $\Sigma=\{a, b\}$ and let $L=\left\{w \in \Sigma^{*} \mid\right.$ some substring of w consists of two $b s$ separated by five characters $\}$.
d. Let $\Sigma=\{a, b\}$ and let $L=\left\{w \in \Sigma^{*} \mid w\right.$ does not contain two consecutive as or $\left.b s\right\}$. (Hint: Write out some strings in this language. What do you notice?)

4. The State Elimination Algorithm

Let's practice the state elimination algorithm, which converts an NFA into a regular expression. Consider this NFA:

a. Prepare the NFA for the state elimination algorithm by adding two new states, $q_{\text {start }}$ and $q_{\text {end }}$, adding an ε transition from $q_{\text {start }}$ to the old start state, adding an ε transition from all of the accept states to $q_{\text {end }}$, marking all of the accept states as no longer-accepting, and marking the new end state as accepting.

To eliminate a state q, identify all pairs of states $q_{i n}$ and $q_{o u t}$ where there's a transition from $q_{\text {in }}$ to q and from q to $q_{\text {out }}$, then add shortcut edges from $q_{\text {in }}$ to $q_{\text {out }}$ to bypass state q. Remember that $q_{\text {in }}$ and $q_{\text {out }}$ may be the same state.
b. Eliminate state q_{2} from the NFA.
c. Eliminate state q_{1} from the NFA.
d. Eliminate state q_{0} from the NFA. What is the final regex?

