
CS103ACE Lecture 17-18 Practice Problems

1. Nonregular Languages Review

a. What problems do nonregular languages correspond to?

Nonregular languages represent problems that cannot be represented with an NFA,
DFA, or regex, that is, cannot be solved with a computer with a finite amount of
memory.

b. Intuitively, why is E = {anbn | n ∈ N} not regular? Meanwhile, intuitively, why is the
language L = {anbn | n ∈ N and n ≤ 103} regular?

E is not regular because we need to keep track of a number that can grow arbitrarily
large (the difference between the number of a’s and b’s we’ve seen), so it cannot be
solved with finite memory.

Meanwhile, L is regular because the number we need to keep track of is limited. It can
be no more than 103.

Also, while regular languages can be infinite, all finite languages are regular, and L is a
finite language.

c. For some language L over Σ and strings x and y, the formal definition of the statement “x
and y are distinguishable relative to L”, denoted by x ̸≡L y, is ∃w ∈ Σ∗. (xw ∈ L ↔ yw ̸∈ L).
Explain this definition in plain English.

This means “there’s a string w you can add onto the end of x and y so that exactly one
of the resulting strings (xw or yw, but not both) will be in L.”

d. Explain the definition of a distinguishing set for L: ∀x ∈ S. ∀y ∈ S. (x ̸= y → x ̸≡L y)

Given an arbitrary language, what is the smallest distinguishing set for it?

A distinguishing set S for a language L is a set where any two distinct elements from
the set are distinguishable relative to the language.

The smallest distinguishing set for any language is the empty set. The definition of
distinguishing set is vacuously true.

e. For the language L = {anbn | n ∈ N}, give an example of two strings x and y where x ̸≡L y
is true. Give an example of two strings x and y where x ̸≡L y is false.

Spring 2024 – Page 1/8

CS103ACE Lecture 17-18 Practice Problems

x ̸≡L y for x = a and y = aa. Adding b to the end of both strings results in ab ∈ L and
aab ̸∈ L.

x ≡L y for x = aba and y = b. Adding any string to the end of both strings results in
two strings that are definitely not in the language since they break the pattern.

Spring 2024 – Page 2/8

CS103ACE Lecture 17-18 Practice Problems

2. Proving Languages are Not Regular

The Myhill-Nerode theorem says the following:

Let L be a language over Σ. If there is a set S ∈ Σ∗ such that

• S contains infinitely many strings, and

• every pair of distinct strings x, y ∈ S are distinguishable relative to L, that is, x ̸≡L y,

then L is not a regular language.

a. Explain intuitively why S has to be an infinite set for this theorem to work.

The proof of the Myhill-Nerode theorem works by arguing that no matter how many
states we have in a DFA for a language L, we can always find a larger number of pairwise
distinguishable strings. If we have infinitely many strings in S, we can always ensure
that we have more strings in S than there are states in any proposed DFA for L. On
the other hand, if S is finite, this line of reasoning only works on DFAs that have fewer
than |S| states.

b. Does S have to be a subset of L? Why or why not?

Nope, not at all! We just need S to be a subset of Σ∗. This is really important: when
you’re trying to show that a language isn’t regular, you don’t need to limit your search
for distinguishable strings purely to strings in L. You can use any strings you’d like.

c. Give an example of a distinguishing set for the language L = {anbn | n ∈ N}.

The example we discussed in lecture was {an | n ∈ N}. This is the set {ε, a, aa, aaa, ...}

d. Let’s practice using the theorem. Let Σ = {a, b} and let L = {bnam | n,m ∈ N and n ̸= m}.

(1) Explain why L is not the complement of the language {anbn | n ∈ N}.

The complement of {anbn | n ∈ N} contains strings like aab or abba that don’t
consist of a string of b’s followed by a string of a’s, but these strings aren’t in L.

(2) Give an intuitive justification for why L isn’t regular – what would we need to “remem-
ber” that would not fit in a finite amount of memory?

Spring 2024 – Page 3/8

CS103ACE Lecture 17-18 Practice Problems

Similarly to the language {anbn | n ∈ N}, we need to keep track of how many b’s
we’ve seen before seeing our first a, so that we can ensure that the number of a’s
is not the same. This number could be arbitrarily large.

(3) Use the Myhill-Nerode theorem to prove that L isn’t regular. You’ll need to find an
infinite set of strings that are pairwise distinguishable relative to L. Finding this set is
the difficult part of any nonregular language proof. Think of some category of strings
that would have to be treated differently by any DFA for L, then see what happens if
you gather all of them together into a set.

Proof: Let S = {bn | n ∈ N}. We will prove that S is infinite and is a distinguishing
set for L.

To see that S is infinite, note that it contains one string per natural number.

To see that any pair of strings in S are distinguishable relative to L, pick any two
strings bn, bm ∈ S where n ̸= m. Then, note that bnan ̸∈ L but bman ∈ L. We see
that an ̸≡L am, as required.

Because S is an infinite distinguishing set for L, by the Myhill-Nerode theorem, L
is not regular. ■

Spring 2024 – Page 4/8

CS103ACE Lecture 17-18 Practice Problems

3. Writing Regular Expressions

Here are some tips for writing regular expressions:

• Think about ways to simplify the problem. Is there a choice between multiple options, which
you could represent with ∪? Is there some way to split strings in this language into multiple
parts or sections, which you could concatenate?

• Try writing out example strings in the language. A regex can only generate arbitrarily long
strings using the ∗ operator. Look out for a repeating pattern that you can star.

To practice with regular expressions, write a regular expression for each of these languages.

a. Let Σ = {a, b, c} and let L = {w ∈ Σ∗ | w ends in cab}.

One option is
Σ∗cab

This matches any string that begins with some number of characters of any type, then
ends with cab.

b. Let Σ = {a, b} and let L = {w ∈ Σ∗ | w ̸= ε and the first and last character of w are the same}.

Here’s an option:
a ∪ b ∪ aΣ∗a ∪ bΣ∗b

This says “match a, or b, or something that starts and ends in a with any number of
characters in the middle, or something that starts and ends in b with any number of
characters in the middle.”

We can condense this using the ? operator:

a(Σ∗a)? ∪ b(Σ∗b)?

c. Let Σ = {a, b} and let L = {w ∈ Σ∗ | some substring of w consists of two bs
separated by five characters }.

Here’s a way to do this:
Σ∗bΣ5bΣ∗

This says “match any number of characters, then b, then 5 characters, then b, then any
number of characters.”

d. Let Σ = {a, b} and let L = {w ∈ Σ∗ | w does not contain two consecutive as or bs}. (Hint:
Write out some strings in this language. What do you notice?)

Spring 2024 – Page 5/8

CS103ACE Lecture 17-18 Practice Problems

Here’s one option:
(ba)∗b? ∪ (ab)∗a?

The definition means that we’ll need to alternate between a’s and b’s.

Spring 2024 – Page 6/8

CS103ACE Lecture 17-18 Practice Problems

4. The State Elimination Algorithm

Let’s practice the state elimination algorithm, which converts an NFA into a regular expression.
Consider this NFA:

q0 q1 q2a Σ

Σ

start

a. Prepare the NFA for the state elimination algorithm by adding two new states, qstart and qend,
adding an ε transition from qstart to the old start state, adding an ε transition from all of the
accept states to qend, marking all of the accept states as no longer-accepting, and marking the
new end state as accepting.

q0 q1 q2start enda Σ

Σ

ε ε

To eliminate a state q, identify all pairs of states qin and qout where there’s a transition from qin to
q and from q to qout, then add shortcut edges from qin to qout to bypass state q. Remember that qin
and qout may be the same state.

b. Eliminate state q2 from the NFA.

We only have to add a transition between one pair of qualifying states in this case, from
q1 to end. The transitions we’d have to take to eliminate these states are Σ and then
ε. The regular expression we should add onto that transition is Σε, which is the same
thing as Σ.

q0 q1start enda

Σ

ε Σ

c. Eliminate state q1 from the NFA.

The only pair of states we need to add a transition between are q0 and end. We
combine the two regular expressions to see how to label the new transition, giving us
aΣ. Intuitively, we can get from q0 to end by reading one a and then one of any

Spring 2024 – Page 7/8

CS103ACE Lecture 17-18 Practice Problems

character.

q0start end

Σ

ε aΣ

d. Eliminate state q0 from the NFA. What is the final regex?

Here, there is only one pair of states we need to add a transition between, start and
end; but because there is a transition on q0 to itself, we have to introduce the Kleene
star into the regular expression.

start end
εΣ∗aΣ

Now that we have only our two states left, we’re left with the regular expression εΣ∗aΣ,
which can be simplified to Σ∗aΣ.

Spring 2024 – Page 8/8

